MakeItFrom.com
Menu (ESC)

EN 1.4854 Stainless Steel vs. C84500 Brass

EN 1.4854 stainless steel belongs to the iron alloys classification, while C84500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4854 stainless steel and the bottom bar is C84500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
55
Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 45
28
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
39
Tensile Strength: Ultimate (UTS), MPa 750
240
Tensile Strength: Yield (Proof), MPa 340
97

Thermal Properties

Latent Heat of Fusion, J/g 330
180
Maximum Temperature: Mechanical, °C 1170
150
Melting Completion (Liquidus), °C 1370
980
Melting Onset (Solidus), °C 1330
840
Specific Heat Capacity, J/kg-K 480
360
Thermal Conductivity, W/m-K 11
72
Thermal Expansion, µm/m-K 15
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
16
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
17

Otherwise Unclassified Properties

Base Metal Price, % relative 34
28
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 5.7
2.9
Embodied Energy, MJ/kg 81
47
Embodied Water, L/kg 220
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
54
Resilience: Unit (Modulus of Resilience), kJ/m3 280
45
Stiffness to Weight: Axial, points 14
6.6
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 26
7.7
Strength to Weight: Bending, points 23
9.8
Thermal Diffusivity, mm2/s 2.9
23
Thermal Shock Resistance, points 18
8.6

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.040 to 0.080
0
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
77 to 79
Iron (Fe), % 33.6 to 40.6
0 to 0.4
Lead (Pb), % 0
6.0 to 7.5
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 34 to 36
0 to 1.0
Nitrogen (N), % 0.12 to 0.2
0
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 1.2 to 2.0
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.080
Tin (Sn), % 0
2.0 to 4.0
Zinc (Zn), % 0
10 to 14
Residuals, % 0
0 to 0.7