MakeItFrom.com
Menu (ESC)

EN 1.4854 Stainless Steel vs. S66286 Stainless Steel

Both EN 1.4854 stainless steel and S66286 stainless steel are iron alloys. They have 79% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4854 stainless steel and the bottom bar is S66286 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 45
17 to 40
Fatigue Strength, MPa 310
240 to 410
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
75
Shear Strength, MPa 520
420 to 630
Tensile Strength: Ultimate (UTS), MPa 750
620 to 1020
Tensile Strength: Yield (Proof), MPa 340
280 to 670

Thermal Properties

Latent Heat of Fusion, J/g 330
300
Maximum Temperature: Corrosion, °C 450
780
Maximum Temperature: Mechanical, °C 1170
920
Melting Completion (Liquidus), °C 1370
1430
Melting Onset (Solidus), °C 1330
1370
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 11
15
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 34
26
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 5.7
6.0
Embodied Energy, MJ/kg 81
87
Embodied Water, L/kg 220
170

Common Calculations

PREN (Pitting Resistance) 28
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
150 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 280
190 to 1150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 26
22 to 36
Strength to Weight: Bending, points 23
20 to 28
Thermal Diffusivity, mm2/s 2.9
4.0
Thermal Shock Resistance, points 18
13 to 22

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0.040 to 0.080
0 to 0.080
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 24 to 26
13.5 to 16
Iron (Fe), % 33.6 to 40.6
49.1 to 59.5
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 34 to 36
24 to 27
Nitrogen (N), % 0.12 to 0.2
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 1.2 to 2.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0
1.9 to 2.4
Vanadium (V), % 0
0.1 to 0.5