MakeItFrom.com
Menu (ESC)

EN 1.4855 Stainless Steel vs. 2017 Aluminum

EN 1.4855 stainless steel belongs to the iron alloys classification, while 2017 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4855 stainless steel and the bottom bar is 2017 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 4.6
12 to 18
Fatigue Strength, MPa 120
90 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 500
190 to 430
Tensile Strength: Yield (Proof), MPa 250
76 to 260

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 1050
190
Melting Completion (Liquidus), °C 1400
640
Melting Onset (Solidus), °C 1350
510
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 14
150
Thermal Expansion, µm/m-K 16
24

Otherwise Unclassified Properties

Base Metal Price, % relative 34
10
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 5.9
8.0
Embodied Energy, MJ/kg 85
150
Embodied Water, L/kg 200
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
24 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 160
41 to 470
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 18
17 to 40
Strength to Weight: Bending, points 18
24 to 42
Thermal Diffusivity, mm2/s 3.7
56
Thermal Shock Resistance, points 11
7.9 to 18

Alloy Composition

Aluminum (Al), % 0
91.6 to 95.5
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 23 to 25
0 to 0.1
Copper (Cu), % 0
3.5 to 4.5
Iron (Fe), % 42.6 to 51.9
0 to 0.7
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0 to 2.0
0.4 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 23 to 25
0
Niobium (Nb), % 0.8 to 1.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
0.2 to 0.8
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15