MakeItFrom.com
Menu (ESC)

EN 1.4855 Stainless Steel vs. C96700 Copper

EN 1.4855 stainless steel belongs to the iron alloys classification, while C96700 copper belongs to the copper alloys. They have a modest 25% of their average alloy composition in common, which, by itself, doesn't mean much. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4855 stainless steel and the bottom bar is C96700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 4.6
10
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
53
Tensile Strength: Ultimate (UTS), MPa 500
1210
Tensile Strength: Yield (Proof), MPa 250
550

Thermal Properties

Latent Heat of Fusion, J/g 320
250
Maximum Temperature: Mechanical, °C 1050
310
Melting Completion (Liquidus), °C 1400
1170
Melting Onset (Solidus), °C 1350
1110
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 14
30
Thermal Expansion, µm/m-K 16
15

Otherwise Unclassified Properties

Base Metal Price, % relative 34
90
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 5.9
9.5
Embodied Energy, MJ/kg 85
140
Embodied Water, L/kg 200
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
99
Resilience: Unit (Modulus of Resilience), kJ/m3 160
1080
Stiffness to Weight: Axial, points 14
8.9
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 18
38
Strength to Weight: Bending, points 18
29
Thermal Diffusivity, mm2/s 3.7
8.5
Thermal Shock Resistance, points 11
40

Alloy Composition

Beryllium (Be), % 0
1.1 to 1.2
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 23 to 25
0
Copper (Cu), % 0
62.4 to 68.8
Iron (Fe), % 42.6 to 51.9
0.4 to 1.0
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 2.0
0.4 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 23 to 25
29 to 33
Niobium (Nb), % 0.8 to 1.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.15 to 0.35
Zirconium (Zr), % 0
0.15 to 0.35
Residuals, % 0
0 to 0.5