MakeItFrom.com
Menu (ESC)

EN 1.4857 Stainless Steel vs. AISI 439 Stainless Steel

Both EN 1.4857 stainless steel and AISI 439 stainless steel are iron alloys. They have 56% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4857 stainless steel and the bottom bar is AISI 439 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
160
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 6.7
23
Fatigue Strength, MPa 120
170
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
77
Tensile Strength: Ultimate (UTS), MPa 500
490
Tensile Strength: Yield (Proof), MPa 250
250

Thermal Properties

Latent Heat of Fusion, J/g 330
280
Maximum Temperature: Corrosion, °C 440
530
Maximum Temperature: Mechanical, °C 1100
890
Melting Completion (Liquidus), °C 1370
1510
Melting Onset (Solidus), °C 1320
1430
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 13
25
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 34
9.0
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 5.7
2.3
Embodied Energy, MJ/kg 81
34
Embodied Water, L/kg 220
120

Common Calculations

PREN (Pitting Resistance) 26
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
95
Resilience: Unit (Modulus of Resilience), kJ/m3 150
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
18
Strength to Weight: Bending, points 18
18
Thermal Diffusivity, mm2/s 3.4
6.7
Thermal Shock Resistance, points 11
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Carbon (C), % 0.3 to 0.5
0 to 0.030
Chromium (Cr), % 24 to 27
17 to 19
Iron (Fe), % 31.4 to 41.7
77.1 to 82.8
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 33 to 36
0 to 0.5
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 1.0 to 2.5
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0.2 to 1.1