MakeItFrom.com
Menu (ESC)

EN 1.4859 Stainless Steel vs. 5052 Aluminum

EN 1.4859 stainless steel belongs to the iron alloys classification, while 5052 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4859 stainless steel and the bottom bar is 5052 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
46 to 83
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 23
1.1 to 22
Fatigue Strength, MPa 140
66 to 140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 490
190 to 320
Tensile Strength: Yield (Proof), MPa 210
75 to 280

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1050
190
Melting Completion (Liquidus), °C 1410
650
Melting Onset (Solidus), °C 1360
610
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 13
140
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
35
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
120

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 6.2
8.6
Embodied Energy, MJ/kg 88
150
Embodied Water, L/kg 190
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
1.7 to 69
Resilience: Unit (Modulus of Resilience), kJ/m3 110
41 to 590
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 17
19 to 33
Strength to Weight: Bending, points 17
27 to 38
Thermal Diffusivity, mm2/s 3.4
57
Thermal Shock Resistance, points 11
8.3 to 14

Alloy Composition

Aluminum (Al), % 0
95.8 to 97.7
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 19 to 21
0.15 to 0.35
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 40.3 to 49
0 to 0.4
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 0 to 2.0
0 to 0.1
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 31 to 33
0
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0.5 to 1.5
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15