MakeItFrom.com
Menu (ESC)

EN 1.4859 Stainless Steel vs. C67500 Bronze

EN 1.4859 stainless steel belongs to the iron alloys classification, while C67500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4859 stainless steel and the bottom bar is C67500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 23
14 to 33
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 490
430 to 580
Tensile Strength: Yield (Proof), MPa 210
170 to 370

Thermal Properties

Latent Heat of Fusion, J/g 310
170
Maximum Temperature: Mechanical, °C 1050
120
Melting Completion (Liquidus), °C 1410
890
Melting Onset (Solidus), °C 1360
870
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 13
110
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
24
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
27

Otherwise Unclassified Properties

Base Metal Price, % relative 36
23
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 6.2
2.8
Embodied Energy, MJ/kg 88
47
Embodied Water, L/kg 190
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
61 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 110
130 to 650
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 17
15 to 20
Strength to Weight: Bending, points 17
16 to 19
Thermal Diffusivity, mm2/s 3.4
34
Thermal Shock Resistance, points 11
14 to 19

Alloy Composition

Aluminum (Al), % 0
0 to 0.25
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 0
57 to 60
Iron (Fe), % 40.3 to 49
0.8 to 2.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
0.050 to 0.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 31 to 33
0
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0.5 to 1.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
35.1 to 41.7
Residuals, % 0
0 to 0.5