MakeItFrom.com
Menu (ESC)

EN 1.4864 Stainless Steel vs. C48600 Brass

EN 1.4864 stainless steel belongs to the iron alloys classification, while C48600 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4864 stainless steel and the bottom bar is C48600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 33
20 to 25
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 75
39
Shear Strength, MPa 430
180 to 230
Tensile Strength: Ultimate (UTS), MPa 650
280 to 360
Tensile Strength: Yield (Proof), MPa 260
110 to 170

Thermal Properties

Latent Heat of Fusion, J/g 310
170
Maximum Temperature: Mechanical, °C 1100
120
Melting Completion (Liquidus), °C 1390
900
Melting Onset (Solidus), °C 1340
890
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 13
110
Thermal Expansion, µm/m-K 14
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
25
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
28

Otherwise Unclassified Properties

Base Metal Price, % relative 30
24
Density, g/cm3 8.0
8.1
Embodied Carbon, kg CO2/kg material 5.3
2.8
Embodied Energy, MJ/kg 75
47
Embodied Water, L/kg 180
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
55 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 170
61 to 140
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 23
9.5 to 12
Strength to Weight: Bending, points 21
12 to 14
Thermal Diffusivity, mm2/s 3.3
36
Thermal Shock Resistance, points 17
9.3 to 12

Alloy Composition

Arsenic (As), % 0
0.020 to 0.25
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 0
59 to 62
Iron (Fe), % 41.7 to 51
0
Lead (Pb), % 0
1.0 to 2.5
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 33 to 37
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 1.0 to 2.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.3 to 1.5
Zinc (Zn), % 0
33.4 to 39.7
Residuals, % 0
0 to 0.4