MakeItFrom.com
Menu (ESC)

EN 1.4869 Casting Alloy vs. 358.0 Aluminum

EN 1.4869 casting alloy belongs to the nickel alloys classification, while 358.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4869 casting alloy and the bottom bar is 358.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 5.7
3.5 to 6.0
Fatigue Strength, MPa 130
100 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 540
350 to 370
Tensile Strength: Yield (Proof), MPa 310
290 to 320

Thermal Properties

Latent Heat of Fusion, J/g 330
520
Maximum Temperature: Mechanical, °C 1200
170
Melting Completion (Liquidus), °C 1450
600
Melting Onset (Solidus), °C 1390
560
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 10
150
Thermal Expansion, µm/m-K 13
21

Otherwise Unclassified Properties

Base Metal Price, % relative 70
19
Density, g/cm3 8.5
2.6
Embodied Carbon, kg CO2/kg material 7.7
8.7
Embodied Energy, MJ/kg 110
160
Embodied Water, L/kg 300
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 26
12 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 230
590 to 710
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
53
Strength to Weight: Axial, points 18
37 to 39
Strength to Weight: Bending, points 17
42 to 44
Thermal Diffusivity, mm2/s 2.6
63
Thermal Shock Resistance, points 14
16 to 17

Alloy Composition

Aluminum (Al), % 0
89.1 to 91.8
Beryllium (Be), % 0
0.1 to 0.3
Carbon (C), % 0.45 to 0.55
0
Chromium (Cr), % 24 to 26
0 to 0.2
Cobalt (Co), % 14 to 16
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 11.4 to 23.6
0 to 0.3
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 1.0
0 to 0.2
Nickel (Ni), % 33 to 37
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.0
7.6 to 8.6
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.1 to 0.2
Tungsten (W), % 4.0 to 6.0
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15