MakeItFrom.com
Menu (ESC)

EN 1.4869 Casting Alloy vs. EN AC-48100 Aluminum

EN 1.4869 casting alloy belongs to the nickel alloys classification, while EN AC-48100 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4869 casting alloy and the bottom bar is EN AC-48100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
76
Elongation at Break, % 5.7
1.1
Fatigue Strength, MPa 130
120 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
29
Tensile Strength: Ultimate (UTS), MPa 540
240 to 330
Tensile Strength: Yield (Proof), MPa 310
190 to 300

Thermal Properties

Latent Heat of Fusion, J/g 330
640
Maximum Temperature: Mechanical, °C 1200
170
Melting Completion (Liquidus), °C 1450
580
Melting Onset (Solidus), °C 1390
470
Specific Heat Capacity, J/kg-K 460
880
Thermal Conductivity, W/m-K 10
130
Thermal Expansion, µm/m-K 13
20

Otherwise Unclassified Properties

Base Metal Price, % relative 70
11
Density, g/cm3 8.5
2.8
Embodied Carbon, kg CO2/kg material 7.7
7.3
Embodied Energy, MJ/kg 110
130
Embodied Water, L/kg 300
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 26
2.3 to 3.6
Resilience: Unit (Modulus of Resilience), kJ/m3 230
250 to 580
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 18
24 to 33
Strength to Weight: Bending, points 17
31 to 38
Thermal Diffusivity, mm2/s 2.6
55
Thermal Shock Resistance, points 14
11 to 16

Alloy Composition

Aluminum (Al), % 0
72.1 to 79.8
Carbon (C), % 0.45 to 0.55
0
Chromium (Cr), % 24 to 26
0
Cobalt (Co), % 14 to 16
0
Copper (Cu), % 0
4.0 to 5.0
Iron (Fe), % 11.4 to 23.6
0 to 1.3
Magnesium (Mg), % 0
0.25 to 0.65
Manganese (Mn), % 0 to 1.0
0 to 0.5
Nickel (Ni), % 33 to 37
0 to 0.3
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.0
16 to 18
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Tungsten (W), % 4.0 to 6.0
0
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.25