MakeItFrom.com
Menu (ESC)

EN 1.4869 Casting Alloy vs. C14700 Copper

EN 1.4869 casting alloy belongs to the nickel alloys classification, while C14700 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4869 casting alloy and the bottom bar is C14700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 5.7
9.1 to 35
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 80
43
Tensile Strength: Ultimate (UTS), MPa 540
240 to 320
Tensile Strength: Yield (Proof), MPa 310
85 to 250

Thermal Properties

Latent Heat of Fusion, J/g 330
210
Maximum Temperature: Mechanical, °C 1200
200
Melting Completion (Liquidus), °C 1450
1080
Melting Onset (Solidus), °C 1390
1070
Specific Heat Capacity, J/kg-K 460
390
Thermal Conductivity, W/m-K 10
370
Thermal Expansion, µm/m-K 13
17

Otherwise Unclassified Properties

Base Metal Price, % relative 70
30
Density, g/cm3 8.5
8.9
Embodied Carbon, kg CO2/kg material 7.7
2.6
Embodied Energy, MJ/kg 110
41
Embodied Water, L/kg 300
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 26
25 to 65
Resilience: Unit (Modulus of Resilience), kJ/m3 230
31 to 280
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 18
7.3 to 10
Strength to Weight: Bending, points 17
9.5 to 12
Thermal Diffusivity, mm2/s 2.6
110
Thermal Shock Resistance, points 14
8.4 to 12

Alloy Composition

Carbon (C), % 0.45 to 0.55
0
Chromium (Cr), % 24 to 26
0
Cobalt (Co), % 14 to 16
0
Copper (Cu), % 0
99.395 to 99.798
Iron (Fe), % 11.4 to 23.6
0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 33 to 37
0
Phosphorus (P), % 0 to 0.040
0.0020 to 0.0050
Silicon (Si), % 1.0 to 2.0
0
Sulfur (S), % 0 to 0.030
0.2 to 0.5
Tungsten (W), % 4.0 to 6.0
0
Residuals, % 0
0 to 0.1