MakeItFrom.com
Menu (ESC)

EN 1.4872 Stainless Steel vs. 2618A Aluminum

EN 1.4872 stainless steel belongs to the iron alloys classification, while 2618A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4872 stainless steel and the bottom bar is 2618A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 28
4.5
Fatigue Strength, MPa 410
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
27
Shear Strength, MPa 620
260
Tensile Strength: Ultimate (UTS), MPa 950
440
Tensile Strength: Yield (Proof), MPa 560
410

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Mechanical, °C 1150
230
Melting Completion (Liquidus), °C 1390
670
Melting Onset (Solidus), °C 1340
560
Specific Heat Capacity, J/kg-K 490
880
Thermal Conductivity, W/m-K 15
150
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
37
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
110

Otherwise Unclassified Properties

Base Metal Price, % relative 17
11
Density, g/cm3 7.6
3.0
Embodied Carbon, kg CO2/kg material 3.3
8.4
Embodied Energy, MJ/kg 47
150
Embodied Water, L/kg 180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
19
Resilience: Unit (Modulus of Resilience), kJ/m3 780
1180
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 26
47
Strength to Weight: Axial, points 35
41
Strength to Weight: Bending, points 28
44
Thermal Diffusivity, mm2/s 3.9
59
Thermal Shock Resistance, points 21
19

Alloy Composition

Aluminum (Al), % 0
91.5 to 95.2
Carbon (C), % 0.2 to 0.3
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
1.8 to 2.7
Iron (Fe), % 54.2 to 61.6
0.9 to 1.4
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 8.0 to 10
0 to 0.25
Nickel (Ni), % 6.0 to 8.0
0.8 to 1.4
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0.15 to 0.25
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.15
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15