MakeItFrom.com
Menu (ESC)

EN 1.4872 Stainless Steel vs. 319.0 Aluminum

EN 1.4872 stainless steel belongs to the iron alloys classification, while 319.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4872 stainless steel and the bottom bar is 319.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
78 to 84
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 28
1.8 to 2.0
Fatigue Strength, MPa 410
76 to 80
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
27
Shear Strength, MPa 620
170 to 210
Tensile Strength: Ultimate (UTS), MPa 950
190 to 240
Tensile Strength: Yield (Proof), MPa 560
110 to 180

Thermal Properties

Latent Heat of Fusion, J/g 300
480
Maximum Temperature: Mechanical, °C 1150
170
Melting Completion (Liquidus), °C 1390
600
Melting Onset (Solidus), °C 1340
540
Specific Heat Capacity, J/kg-K 490
880
Thermal Conductivity, W/m-K 15
110
Thermal Expansion, µm/m-K 16
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
27
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
84

Otherwise Unclassified Properties

Base Metal Price, % relative 17
10
Density, g/cm3 7.6
2.9
Embodied Carbon, kg CO2/kg material 3.3
7.7
Embodied Energy, MJ/kg 47
140
Embodied Water, L/kg 180
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
3.3 to 3.9
Resilience: Unit (Modulus of Resilience), kJ/m3 780
88 to 220
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
48
Strength to Weight: Axial, points 35
18 to 24
Strength to Weight: Bending, points 28
25 to 30
Thermal Diffusivity, mm2/s 3.9
44
Thermal Shock Resistance, points 21
8.6 to 11

Alloy Composition

Aluminum (Al), % 0
85.8 to 91.5
Carbon (C), % 0.2 to 0.3
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
3.0 to 4.0
Iron (Fe), % 54.2 to 61.6
0 to 1.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 8.0 to 10
0 to 0.5
Nickel (Ni), % 6.0 to 8.0
0 to 0.35
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
5.5 to 6.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5