MakeItFrom.com
Menu (ESC)

EN 1.4872 Stainless Steel vs. 354.0 Aluminum

EN 1.4872 stainless steel belongs to the iron alloys classification, while 354.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4872 stainless steel and the bottom bar is 354.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 28
2.4 to 3.0
Fatigue Strength, MPa 410
92 to 120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
27
Tensile Strength: Ultimate (UTS), MPa 950
360 to 380
Tensile Strength: Yield (Proof), MPa 560
280 to 310

Thermal Properties

Latent Heat of Fusion, J/g 300
530
Maximum Temperature: Mechanical, °C 1150
170
Melting Completion (Liquidus), °C 1390
600
Melting Onset (Solidus), °C 1340
550
Specific Heat Capacity, J/kg-K 490
900
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
110

Otherwise Unclassified Properties

Base Metal Price, % relative 17
9.5
Density, g/cm3 7.6
2.7
Embodied Carbon, kg CO2/kg material 3.3
7.8
Embodied Energy, MJ/kg 47
150
Embodied Water, L/kg 180
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
8.6 to 9.8
Resilience: Unit (Modulus of Resilience), kJ/m3 780
540 to 670
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 26
52
Strength to Weight: Axial, points 35
37 to 39
Strength to Weight: Bending, points 28
42 to 44
Thermal Diffusivity, mm2/s 3.9
52
Thermal Shock Resistance, points 21
17 to 18

Alloy Composition

Aluminum (Al), % 0
87.3 to 89.4
Carbon (C), % 0.2 to 0.3
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
1.6 to 2.0
Iron (Fe), % 54.2 to 61.6
0 to 0.2
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 8.0 to 10
0 to 0.1
Nickel (Ni), % 6.0 to 8.0
0
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
8.6 to 9.4
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15