MakeItFrom.com
Menu (ESC)

EN 1.4872 Stainless Steel vs. 4147 Aluminum

EN 1.4872 stainless steel belongs to the iron alloys classification, while 4147 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4872 stainless steel and the bottom bar is 4147 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 28
3.3
Fatigue Strength, MPa 410
42
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
27
Shear Strength, MPa 620
63
Tensile Strength: Ultimate (UTS), MPa 950
110
Tensile Strength: Yield (Proof), MPa 560
59

Thermal Properties

Latent Heat of Fusion, J/g 300
570
Maximum Temperature: Mechanical, °C 1150
160
Melting Completion (Liquidus), °C 1390
580
Melting Onset (Solidus), °C 1340
560
Specific Heat Capacity, J/kg-K 490
900
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
33
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
120

Otherwise Unclassified Properties

Base Metal Price, % relative 17
9.5
Density, g/cm3 7.6
2.5
Embodied Carbon, kg CO2/kg material 3.3
7.7
Embodied Energy, MJ/kg 47
140
Embodied Water, L/kg 180
1050

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
3.1
Resilience: Unit (Modulus of Resilience), kJ/m3 780
24
Stiffness to Weight: Axial, points 15
16
Stiffness to Weight: Bending, points 26
55
Strength to Weight: Axial, points 35
12
Strength to Weight: Bending, points 28
20
Thermal Diffusivity, mm2/s 3.9
58
Thermal Shock Resistance, points 21
5.2

Alloy Composition

Aluminum (Al), % 0
85 to 88.9
Beryllium (Be), % 0
0 to 0.00030
Carbon (C), % 0.2 to 0.3
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 54.2 to 61.6
0 to 0.8
Magnesium (Mg), % 0
0.1 to 0.5
Manganese (Mn), % 8.0 to 10
0 to 0.1
Nickel (Ni), % 6.0 to 8.0
0
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
11 to 13
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15