MakeItFrom.com
Menu (ESC)

EN 1.4872 Stainless Steel vs. 6013 Aluminum

EN 1.4872 stainless steel belongs to the iron alloys classification, while 6013 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4872 stainless steel and the bottom bar is 6013 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 28
3.4 to 22
Fatigue Strength, MPa 410
98 to 140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 620
190 to 240
Tensile Strength: Ultimate (UTS), MPa 950
310 to 410
Tensile Strength: Yield (Proof), MPa 560
170 to 350

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1150
160
Melting Completion (Liquidus), °C 1390
650
Melting Onset (Solidus), °C 1340
580
Specific Heat Capacity, J/kg-K 490
900
Thermal Conductivity, W/m-K 15
150
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
38
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
120

Otherwise Unclassified Properties

Base Metal Price, % relative 17
9.5
Density, g/cm3 7.6
2.8
Embodied Carbon, kg CO2/kg material 3.3
8.3
Embodied Energy, MJ/kg 47
150
Embodied Water, L/kg 180
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
13 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 780
200 to 900
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
49
Strength to Weight: Axial, points 35
31 to 41
Strength to Weight: Bending, points 28
37 to 44
Thermal Diffusivity, mm2/s 3.9
60
Thermal Shock Resistance, points 21
14 to 18

Alloy Composition

Aluminum (Al), % 0
94.8 to 97.8
Carbon (C), % 0.2 to 0.3
0
Chromium (Cr), % 24 to 26
0 to 0.1
Copper (Cu), % 0
0.6 to 1.1
Iron (Fe), % 54.2 to 61.6
0 to 0.5
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 8.0 to 10
0.2 to 0.8
Nickel (Ni), % 6.0 to 8.0
0
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0.6 to 1.0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15