MakeItFrom.com
Menu (ESC)

EN 1.4872 Stainless Steel vs. 6162 Aluminum

EN 1.4872 stainless steel belongs to the iron alloys classification, while 6162 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4872 stainless steel and the bottom bar is 6162 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 28
6.7 to 9.1
Fatigue Strength, MPa 410
100 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 620
170 to 180
Tensile Strength: Ultimate (UTS), MPa 950
290 to 300
Tensile Strength: Yield (Proof), MPa 560
260 to 270

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1150
160
Melting Completion (Liquidus), °C 1390
640
Melting Onset (Solidus), °C 1340
620
Specific Heat Capacity, J/kg-K 490
900
Thermal Conductivity, W/m-K 15
190
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
50
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
170

Otherwise Unclassified Properties

Base Metal Price, % relative 17
9.5
Density, g/cm3 7.6
2.7
Embodied Carbon, kg CO2/kg material 3.3
8.3
Embodied Energy, MJ/kg 47
150
Embodied Water, L/kg 180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
19 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 780
510 to 550
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
50
Strength to Weight: Axial, points 35
29 to 30
Strength to Weight: Bending, points 28
36
Thermal Diffusivity, mm2/s 3.9
79
Thermal Shock Resistance, points 21
13

Alloy Composition

Aluminum (Al), % 0
96.7 to 98.9
Carbon (C), % 0.2 to 0.3
0
Chromium (Cr), % 24 to 26
0 to 0.1
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 54.2 to 61.6
0 to 0.5
Magnesium (Mg), % 0
0.7 to 1.1
Manganese (Mn), % 8.0 to 10
0 to 0.1
Nickel (Ni), % 6.0 to 8.0
0
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0.4 to 0.8
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15