MakeItFrom.com
Menu (ESC)

EN 1.4872 Stainless Steel vs. C355.0 Aluminum

EN 1.4872 stainless steel belongs to the iron alloys classification, while C355.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4872 stainless steel and the bottom bar is C355.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
86 to 90
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 28
2.7 to 3.8
Fatigue Strength, MPa 410
76 to 84
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
26
Tensile Strength: Ultimate (UTS), MPa 950
290 to 310
Tensile Strength: Yield (Proof), MPa 560
200 to 230

Thermal Properties

Latent Heat of Fusion, J/g 300
470
Maximum Temperature: Mechanical, °C 1150
170
Melting Completion (Liquidus), °C 1390
620
Melting Onset (Solidus), °C 1340
570
Specific Heat Capacity, J/kg-K 490
900
Thermal Conductivity, W/m-K 15
150
Thermal Expansion, µm/m-K 16
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
39
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
130

Otherwise Unclassified Properties

Base Metal Price, % relative 17
9.5
Density, g/cm3 7.6
2.7
Embodied Carbon, kg CO2/kg material 3.3
8.0
Embodied Energy, MJ/kg 47
150
Embodied Water, L/kg 180
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
7.5 to 9.8
Resilience: Unit (Modulus of Resilience), kJ/m3 780
290 to 380
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
51
Strength to Weight: Axial, points 35
30 to 32
Strength to Weight: Bending, points 28
36 to 37
Thermal Diffusivity, mm2/s 3.9
60
Thermal Shock Resistance, points 21
13 to 14

Alloy Composition

Aluminum (Al), % 0
91.7 to 94.1
Carbon (C), % 0.2 to 0.3
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
1.0 to 1.5
Iron (Fe), % 54.2 to 61.6
0 to 0.2
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 8.0 to 10
0 to 0.1
Nickel (Ni), % 6.0 to 8.0
0
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
4.5 to 5.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15