MakeItFrom.com
Menu (ESC)

EN 1.4872 Stainless Steel vs. EN 1.4606 Stainless Steel

Both EN 1.4872 stainless steel and EN 1.4606 stainless steel are iron alloys. They have 78% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4872 stainless steel and the bottom bar is EN 1.4606 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
23 to 39
Fatigue Strength, MPa 410
240 to 420
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 79
75
Shear Strength, MPa 620
410 to 640
Tensile Strength: Ultimate (UTS), MPa 950
600 to 1020
Tensile Strength: Yield (Proof), MPa 560
280 to 630

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 440
770
Maximum Temperature: Mechanical, °C 1150
910
Melting Completion (Liquidus), °C 1390
1430
Melting Onset (Solidus), °C 1340
1380
Specific Heat Capacity, J/kg-K 490
470
Thermal Conductivity, W/m-K 15
14
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 17
26
Density, g/cm3 7.6
7.9
Embodied Carbon, kg CO2/kg material 3.3
6.0
Embodied Energy, MJ/kg 47
87
Embodied Water, L/kg 180
170

Common Calculations

PREN (Pitting Resistance) 30
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
190 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 780
200 to 1010
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
24
Strength to Weight: Axial, points 35
21 to 36
Strength to Weight: Bending, points 28
20 to 28
Thermal Diffusivity, mm2/s 3.9
3.7
Thermal Shock Resistance, points 21
21 to 35

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0.2 to 0.3
0 to 0.080
Chromium (Cr), % 24 to 26
13 to 16
Iron (Fe), % 54.2 to 61.6
49.2 to 59
Manganese (Mn), % 8.0 to 10
1.0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 6.0 to 8.0
24 to 27
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0
1.9 to 2.3
Vanadium (V), % 0
0.1 to 0.5