MakeItFrom.com
Menu (ESC)

EN 1.4872 Stainless Steel vs. C46500 Brass

EN 1.4872 stainless steel belongs to the iron alloys classification, while C46500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4872 stainless steel and the bottom bar is C46500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 28
18 to 50
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 79
40
Shear Strength, MPa 620
280 to 380
Tensile Strength: Ultimate (UTS), MPa 950
380 to 610
Tensile Strength: Yield (Proof), MPa 560
190 to 490

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 1150
120
Melting Completion (Liquidus), °C 1390
900
Melting Onset (Solidus), °C 1340
890
Specific Heat Capacity, J/kg-K 490
380
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
29

Otherwise Unclassified Properties

Base Metal Price, % relative 17
23
Density, g/cm3 7.6
8.0
Embodied Carbon, kg CO2/kg material 3.3
2.7
Embodied Energy, MJ/kg 47
47
Embodied Water, L/kg 180
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
99 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 780
170 to 1170
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 26
20
Strength to Weight: Axial, points 35
13 to 21
Strength to Weight: Bending, points 28
15 to 20
Thermal Diffusivity, mm2/s 3.9
38
Thermal Shock Resistance, points 21
13 to 20

Alloy Composition

Arsenic (As), % 0
0.020 to 0.060
Carbon (C), % 0.2 to 0.3
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
59 to 62
Iron (Fe), % 54.2 to 61.6
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 8.0 to 10
0
Nickel (Ni), % 6.0 to 8.0
0
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.5 to 1.0
Zinc (Zn), % 0
36.2 to 40.5
Residuals, % 0
0 to 0.4