MakeItFrom.com
Menu (ESC)

EN 1.4872 Stainless Steel vs. C66700 Brass

EN 1.4872 stainless steel belongs to the iron alloys classification, while C66700 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4872 stainless steel and the bottom bar is C66700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
2.0 to 58
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 79
41
Shear Strength, MPa 620
250 to 530
Tensile Strength: Ultimate (UTS), MPa 950
340 to 690
Tensile Strength: Yield (Proof), MPa 560
100 to 640

Thermal Properties

Latent Heat of Fusion, J/g 300
180
Maximum Temperature: Mechanical, °C 1150
140
Melting Completion (Liquidus), °C 1390
1090
Melting Onset (Solidus), °C 1340
1050
Specific Heat Capacity, J/kg-K 490
390
Thermal Conductivity, W/m-K 15
97
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
17
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
19

Otherwise Unclassified Properties

Base Metal Price, % relative 17
25
Density, g/cm3 7.6
8.2
Embodied Carbon, kg CO2/kg material 3.3
2.7
Embodied Energy, MJ/kg 47
45
Embodied Water, L/kg 180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
13 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 780
49 to 1900
Stiffness to Weight: Axial, points 15
7.3
Stiffness to Weight: Bending, points 26
19
Strength to Weight: Axial, points 35
11 to 23
Strength to Weight: Bending, points 28
13 to 21
Thermal Diffusivity, mm2/s 3.9
30
Thermal Shock Resistance, points 21
11 to 23

Alloy Composition

Carbon (C), % 0.2 to 0.3
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
68.5 to 71.5
Iron (Fe), % 54.2 to 61.6
0 to 0.1
Lead (Pb), % 0
0 to 0.070
Manganese (Mn), % 8.0 to 10
0.8 to 1.5
Nickel (Ni), % 6.0 to 8.0
0
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
26.3 to 30.7
Residuals, % 0
0 to 0.5