MakeItFrom.com
Menu (ESC)

EN 1.4872 Stainless Steel vs. C92800 Bronze

EN 1.4872 stainless steel belongs to the iron alloys classification, while C92800 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.4872 stainless steel and the bottom bar is C92800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 28
1.0
Poisson's Ratio 0.28
0.35
Shear Modulus, GPa 79
37
Tensile Strength: Ultimate (UTS), MPa 950
280
Tensile Strength: Yield (Proof), MPa 560
210

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 1150
140
Melting Completion (Liquidus), °C 1390
960
Melting Onset (Solidus), °C 1340
820
Specific Heat Capacity, J/kg-K 490
350
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 17
36
Density, g/cm3 7.6
8.7
Embodied Carbon, kg CO2/kg material 3.3
4.1
Embodied Energy, MJ/kg 47
67
Embodied Water, L/kg 180
430

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
2.5
Resilience: Unit (Modulus of Resilience), kJ/m3 780
210
Stiffness to Weight: Axial, points 15
6.4
Stiffness to Weight: Bending, points 26
18
Strength to Weight: Axial, points 35
8.8
Strength to Weight: Bending, points 28
11
Thermal Shock Resistance, points 21
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.2 to 0.3
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
78 to 82
Iron (Fe), % 54.2 to 61.6
0 to 0.2
Lead (Pb), % 0
4.0 to 6.0
Manganese (Mn), % 8.0 to 10
0
Nickel (Ni), % 6.0 to 8.0
0 to 0.8
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.045
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
15 to 17
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 0.7