MakeItFrom.com
Menu (ESC)

EN 1.4874 Stainless Steel vs. 206.0 Aluminum

EN 1.4874 stainless steel belongs to the iron alloys classification, while 206.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4874 stainless steel and the bottom bar is 206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
95 to 110
Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 6.7
8.4 to 12
Fatigue Strength, MPa 180
88 to 210
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 480
330 to 440
Tensile Strength: Yield (Proof), MPa 360
190 to 350

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Mechanical, °C 1150
170
Melting Completion (Liquidus), °C 1450
650
Melting Onset (Solidus), °C 1400
570
Specific Heat Capacity, J/kg-K 450
880
Thermal Conductivity, W/m-K 13
120
Thermal Expansion, µm/m-K 15
19

Otherwise Unclassified Properties

Base Metal Price, % relative 70
11
Density, g/cm3 8.4
3.0
Embodied Carbon, kg CO2/kg material 7.6
8.0
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 290
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
24 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 310
270 to 840
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 16
30 to 40
Strength to Weight: Bending, points 16
35 to 42
Thermal Diffusivity, mm2/s 3.3
46
Thermal Shock Resistance, points 11
17 to 23

Alloy Composition

Aluminum (Al), % 0
93.3 to 95.3
Carbon (C), % 0.35 to 0.65
0
Chromium (Cr), % 19 to 22
0
Cobalt (Co), % 18.5 to 22
0
Copper (Cu), % 0
4.2 to 5.0
Iron (Fe), % 23 to 38.9
0 to 0.15
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0 to 2.0
0.2 to 0.5
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 18 to 22
0 to 0.050
Niobium (Nb), % 0.75 to 1.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15