MakeItFrom.com
Menu (ESC)

EN 1.4874 Stainless Steel vs. 2124 Aluminum

EN 1.4874 stainless steel belongs to the iron alloys classification, while 2124 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4874 stainless steel and the bottom bar is 2124 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 6.7
5.7
Fatigue Strength, MPa 180
130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 480
490
Tensile Strength: Yield (Proof), MPa 360
430

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Mechanical, °C 1150
190
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1400
500
Specific Heat Capacity, J/kg-K 450
880
Thermal Conductivity, W/m-K 13
150
Thermal Expansion, µm/m-K 15
23

Otherwise Unclassified Properties

Base Metal Price, % relative 70
10
Density, g/cm3 8.4
3.0
Embodied Carbon, kg CO2/kg material 7.6
8.2
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 290
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
27
Resilience: Unit (Modulus of Resilience), kJ/m3 310
1290
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 16
45
Strength to Weight: Bending, points 16
46
Thermal Diffusivity, mm2/s 3.3
58
Thermal Shock Resistance, points 11
21

Alloy Composition

Aluminum (Al), % 0
91.3 to 94.7
Carbon (C), % 0.35 to 0.65
0
Chromium (Cr), % 19 to 22
0 to 0.1
Cobalt (Co), % 18.5 to 22
0
Copper (Cu), % 0
3.8 to 4.9
Iron (Fe), % 23 to 38.9
0 to 0.3
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 2.0
0.3 to 0.9
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 18 to 22
0
Niobium (Nb), % 0.75 to 1.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15