MakeItFrom.com
Menu (ESC)

EN 1.4874 Stainless Steel vs. 4006 Aluminum

EN 1.4874 stainless steel belongs to the iron alloys classification, while 4006 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4874 stainless steel and the bottom bar is 4006 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
28 to 45
Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 6.7
3.4 to 24
Fatigue Strength, MPa 180
35 to 110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
26
Tensile Strength: Ultimate (UTS), MPa 480
110 to 160
Tensile Strength: Yield (Proof), MPa 360
62 to 140

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1150
160
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1400
620
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 13
220
Thermal Expansion, µm/m-K 15
23

Otherwise Unclassified Properties

Base Metal Price, % relative 70
9.0
Density, g/cm3 8.4
2.7
Embodied Carbon, kg CO2/kg material 7.6
8.1
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 290
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
5.1 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 310
28 to 130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 16
11 to 16
Strength to Weight: Bending, points 16
19 to 24
Thermal Diffusivity, mm2/s 3.3
89
Thermal Shock Resistance, points 11
4.9 to 7.0

Alloy Composition

Aluminum (Al), % 0
97.4 to 98.7
Carbon (C), % 0.35 to 0.65
0
Chromium (Cr), % 19 to 22
0 to 0.2
Cobalt (Co), % 18.5 to 22
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 23 to 38.9
0.5 to 0.8
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 2.0
0 to 0.050
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 18 to 22
0
Niobium (Nb), % 0.75 to 1.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.8 to 1.2
Sulfur (S), % 0 to 0.030
0
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.15