MakeItFrom.com
Menu (ESC)

EN 1.4874 Stainless Steel vs. 5383 Aluminum

EN 1.4874 stainless steel belongs to the iron alloys classification, while 5383 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4874 stainless steel and the bottom bar is 5383 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
85 to 110
Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 6.7
6.7 to 15
Fatigue Strength, MPa 180
130 to 200
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
26
Tensile Strength: Ultimate (UTS), MPa 480
310 to 370
Tensile Strength: Yield (Proof), MPa 360
150 to 310

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Corrosion, °C 560
65
Maximum Temperature: Mechanical, °C 1150
200
Melting Completion (Liquidus), °C 1450
650
Melting Onset (Solidus), °C 1400
540
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 13
130
Thermal Expansion, µm/m-K 15
24

Otherwise Unclassified Properties

Base Metal Price, % relative 70
9.5
Density, g/cm3 8.4
2.7
Embodied Carbon, kg CO2/kg material 7.6
9.0
Embodied Energy, MJ/kg 110
160
Embodied Water, L/kg 290
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
23 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 310
170 to 690
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 16
32 to 38
Strength to Weight: Bending, points 16
38 to 42
Thermal Diffusivity, mm2/s 3.3
51
Thermal Shock Resistance, points 11
14 to 16

Alloy Composition

Aluminum (Al), % 0
92 to 95.3
Carbon (C), % 0.35 to 0.65
0
Chromium (Cr), % 19 to 22
0 to 0.25
Cobalt (Co), % 18.5 to 22
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 23 to 38.9
0 to 0.25
Magnesium (Mg), % 0
4.0 to 5.2
Manganese (Mn), % 0 to 2.0
0.7 to 1.0
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 18 to 22
0
Niobium (Nb), % 0.75 to 1.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.4
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15