MakeItFrom.com
Menu (ESC)

EN 1.4874 Stainless Steel vs. 6018 Aluminum

EN 1.4874 stainless steel belongs to the iron alloys classification, while 6018 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4874 stainless steel and the bottom bar is 6018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 6.7
9.0 to 9.1
Fatigue Strength, MPa 180
85 to 89
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
26
Tensile Strength: Ultimate (UTS), MPa 480
290 to 300
Tensile Strength: Yield (Proof), MPa 360
220 to 230

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1150
160
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1400
570
Specific Heat Capacity, J/kg-K 450
890
Thermal Conductivity, W/m-K 13
170
Thermal Expansion, µm/m-K 15
23

Otherwise Unclassified Properties

Base Metal Price, % relative 70
10
Density, g/cm3 8.4
2.9
Embodied Carbon, kg CO2/kg material 7.6
8.2
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 290
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
24 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 310
360 to 380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
48
Strength to Weight: Axial, points 16
28 to 29
Strength to Weight: Bending, points 16
34 to 35
Thermal Diffusivity, mm2/s 3.3
65
Thermal Shock Resistance, points 11
13

Alloy Composition

Aluminum (Al), % 0
93.1 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Carbon (C), % 0.35 to 0.65
0
Chromium (Cr), % 19 to 22
0 to 0.1
Cobalt (Co), % 18.5 to 22
0
Copper (Cu), % 0
0.15 to 0.4
Iron (Fe), % 23 to 38.9
0 to 0.7
Lead (Pb), % 0
0.4 to 1.2
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0 to 2.0
0.3 to 0.8
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 18 to 22
0
Niobium (Nb), % 0.75 to 1.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.5 to 1.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15