MakeItFrom.com
Menu (ESC)

EN 1.4874 Stainless Steel vs. 7076 Aluminum

EN 1.4874 stainless steel belongs to the iron alloys classification, while 7076 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4874 stainless steel and the bottom bar is 7076 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
160
Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 6.7
6.2
Fatigue Strength, MPa 180
170
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 480
530
Tensile Strength: Yield (Proof), MPa 360
460

Thermal Properties

Latent Heat of Fusion, J/g 300
380
Maximum Temperature: Mechanical, °C 1150
170
Melting Completion (Liquidus), °C 1450
630
Melting Onset (Solidus), °C 1400
460
Specific Heat Capacity, J/kg-K 450
860
Thermal Conductivity, W/m-K 13
140
Thermal Expansion, µm/m-K 15
24

Otherwise Unclassified Properties

Base Metal Price, % relative 70
9.5
Density, g/cm3 8.4
3.0
Embodied Carbon, kg CO2/kg material 7.6
8.0
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 290
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
31
Resilience: Unit (Modulus of Resilience), kJ/m3 310
1510
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 16
49
Strength to Weight: Bending, points 16
48
Thermal Diffusivity, mm2/s 3.3
54
Thermal Shock Resistance, points 11
23

Alloy Composition

Aluminum (Al), % 0
86.9 to 91.2
Carbon (C), % 0.35 to 0.65
0
Chromium (Cr), % 19 to 22
0
Cobalt (Co), % 18.5 to 22
0
Copper (Cu), % 0
0.3 to 1.0
Iron (Fe), % 23 to 38.9
0 to 0.6
Magnesium (Mg), % 0
1.2 to 2.0
Manganese (Mn), % 0 to 2.0
0.3 to 0.8
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 18 to 22
0
Niobium (Nb), % 0.75 to 1.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
7.0 to 8.0
Residuals, % 0
0 to 0.15