MakeItFrom.com
Menu (ESC)

EN 1.4874 Stainless Steel vs. ASTM A242 HSLA Steel

Both EN 1.4874 stainless steel and ASTM A242 HSLA steel are iron alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4874 stainless steel and the bottom bar is ASTM A242 HSLA steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
150
Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 6.7
22
Fatigue Strength, MPa 180
230
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 80
73
Tensile Strength: Ultimate (UTS), MPa 480
490
Tensile Strength: Yield (Proof), MPa 360
330

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1150
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 13
52
Thermal Expansion, µm/m-K 15
13

Otherwise Unclassified Properties

Base Metal Price, % relative 70
1.9
Density, g/cm3 8.4
7.9
Embodied Carbon, kg CO2/kg material 7.6
1.4
Embodied Energy, MJ/kg 110
18
Embodied Water, L/kg 290
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
95
Resilience: Unit (Modulus of Resilience), kJ/m3 310
290
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 16
17
Strength to Weight: Bending, points 16
17
Thermal Diffusivity, mm2/s 3.3
14
Thermal Shock Resistance, points 11
14

Alloy Composition

Carbon (C), % 0.35 to 0.65
0 to 0.15
Chromium (Cr), % 19 to 22
0
Cobalt (Co), % 18.5 to 22
0
Copper (Cu), % 0
0.2 to 0.45
Iron (Fe), % 23 to 38.9
98.2 to 99.8
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 18 to 22
0
Niobium (Nb), % 0.75 to 1.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.15
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0 to 0.050
Tungsten (W), % 2.0 to 3.0
0