MakeItFrom.com
Menu (ESC)

EN 1.4874 Stainless Steel vs. ASTM Grade LCA Steel

Both EN 1.4874 stainless steel and ASTM grade LCA steel are iron alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4874 stainless steel and the bottom bar is ASTM grade LCA steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 6.7
27
Fatigue Strength, MPa 180
170
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 80
72
Tensile Strength: Ultimate (UTS), MPa 480
500
Tensile Strength: Yield (Proof), MPa 360
230

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1150
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 13
49
Thermal Expansion, µm/m-K 15
12

Otherwise Unclassified Properties

Base Metal Price, % relative 70
1.9
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 7.6
1.4
Embodied Energy, MJ/kg 110
19
Embodied Water, L/kg 290
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
110
Resilience: Unit (Modulus of Resilience), kJ/m3 310
150
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 16
18
Strength to Weight: Bending, points 16
18
Thermal Diffusivity, mm2/s 3.3
14
Thermal Shock Resistance, points 11
16

Alloy Composition

Carbon (C), % 0.35 to 0.65
0 to 0.25
Chromium (Cr), % 19 to 22
0
Cobalt (Co), % 18.5 to 22
0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 23 to 38.9
96.9 to 100
Manganese (Mn), % 0 to 2.0
0 to 0.7
Molybdenum (Mo), % 2.5 to 3.0
0 to 0.2
Nickel (Ni), % 18 to 22
0
Niobium (Nb), % 0.75 to 1.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.045
Tungsten (W), % 2.0 to 3.0
0
Residuals, % 0
0 to 1.0