MakeItFrom.com
Menu (ESC)

EN 1.4874 Stainless Steel vs. EN AC-45400 Aluminum

EN 1.4874 stainless steel belongs to the iron alloys classification, while EN AC-45400 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4874 stainless steel and the bottom bar is EN AC-45400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
86
Elastic (Young's, Tensile) Modulus, GPa 210
72
Elongation at Break, % 6.7
6.7
Fatigue Strength, MPa 180
55
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 480
260
Tensile Strength: Yield (Proof), MPa 360
130

Thermal Properties

Latent Heat of Fusion, J/g 300
470
Maximum Temperature: Mechanical, °C 1150
170
Melting Completion (Liquidus), °C 1450
630
Melting Onset (Solidus), °C 1400
560
Specific Heat Capacity, J/kg-K 450
880
Thermal Conductivity, W/m-K 13
140
Thermal Expansion, µm/m-K 15
22

Otherwise Unclassified Properties

Base Metal Price, % relative 70
10
Density, g/cm3 8.4
2.8
Embodied Carbon, kg CO2/kg material 7.6
7.8
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 290
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
14
Resilience: Unit (Modulus of Resilience), kJ/m3 310
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 16
25
Strength to Weight: Bending, points 16
32
Thermal Diffusivity, mm2/s 3.3
54
Thermal Shock Resistance, points 11
12

Alloy Composition

Aluminum (Al), % 0
88.4 to 92.9
Carbon (C), % 0.35 to 0.65
0
Chromium (Cr), % 19 to 22
0
Cobalt (Co), % 18.5 to 22
0
Copper (Cu), % 0
2.6 to 3.6
Iron (Fe), % 23 to 38.9
0 to 0.6
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0 to 0.55
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 18 to 22
0 to 0.1
Niobium (Nb), % 0.75 to 1.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
4.5 to 6.0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15