MakeItFrom.com
Menu (ESC)

EN 1.4874 Stainless Steel vs. EN AC-45500 Aluminum

EN 1.4874 stainless steel belongs to the iron alloys classification, while EN AC-45500 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4874 stainless steel and the bottom bar is EN AC-45500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
110
Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 6.7
2.8
Fatigue Strength, MPa 180
80
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
26
Tensile Strength: Ultimate (UTS), MPa 480
320
Tensile Strength: Yield (Proof), MPa 360
250

Thermal Properties

Latent Heat of Fusion, J/g 300
500
Maximum Temperature: Mechanical, °C 1150
170
Melting Completion (Liquidus), °C 1450
610
Melting Onset (Solidus), °C 1400
600
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 13
150
Thermal Expansion, µm/m-K 15
22

Otherwise Unclassified Properties

Base Metal Price, % relative 70
9.5
Density, g/cm3 8.4
2.6
Embodied Carbon, kg CO2/kg material 7.6
8.0
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 290
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
8.2
Resilience: Unit (Modulus of Resilience), kJ/m3 310
430
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
53
Strength to Weight: Axial, points 16
34
Strength to Weight: Bending, points 16
40
Thermal Diffusivity, mm2/s 3.3
65
Thermal Shock Resistance, points 11
15

Alloy Composition

Aluminum (Al), % 0
90.6 to 93.1
Carbon (C), % 0.35 to 0.65
0
Chromium (Cr), % 19 to 22
0
Cobalt (Co), % 18.5 to 22
0
Copper (Cu), % 0
0.2 to 0.7
Iron (Fe), % 23 to 38.9
0 to 0.25
Magnesium (Mg), % 0
0.2 to 0.45
Manganese (Mn), % 0 to 2.0
0 to 0.15
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 18 to 22
0
Niobium (Nb), % 0.75 to 1.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
6.5 to 7.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1