MakeItFrom.com
Menu (ESC)

EN 1.4876 Stainless Steel vs. C19800 Copper

EN 1.4876 stainless steel belongs to the iron alloys classification, while C19800 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4876 stainless steel and the bottom bar is C19800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 33
9.0 to 12
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
43
Shear Strength, MPa 370
260 to 330
Tensile Strength: Ultimate (UTS), MPa 570
430 to 550
Tensile Strength: Yield (Proof), MPa 190
420 to 550

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1400
1070
Melting Onset (Solidus), °C 1350
1050
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 12
260
Thermal Expansion, µm/m-K 14
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
61
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
62

Otherwise Unclassified Properties

Base Metal Price, % relative 30
30
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 5.3
2.8
Embodied Energy, MJ/kg 76
43
Embodied Water, L/kg 200
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
49 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 94
770 to 1320
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20
14 to 17
Strength to Weight: Bending, points 19
14 to 17
Thermal Diffusivity, mm2/s 3.2
75
Thermal Shock Resistance, points 14
15 to 20

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 19 to 23
0
Copper (Cu), % 0
95.7 to 99.47
Iron (Fe), % 38.6 to 50.7
0.020 to 0.5
Magnesium (Mg), % 0
0.1 to 1.0
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 30 to 34
0
Phosphorus (P), % 0 to 0.030
0.010 to 0.1
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.1 to 1.0
Titanium (Ti), % 0.15 to 0.6
0
Zinc (Zn), % 0
0.3 to 1.5
Residuals, % 0
0 to 0.2