EN 1.4877 Stainless Steel vs. SAE-AISI 1008 Steel
Both EN 1.4877 stainless steel and SAE-AISI 1008 steel are iron alloys. They have a modest 40% of their average alloy composition in common, which, by itself, doesn't mean much. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is EN 1.4877 stainless steel and the bottom bar is SAE-AISI 1008 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 190 | |
93 to 100 |
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
190 |
Elongation at Break, % | 36 | |
22 to 33 |
Fatigue Strength, MPa | 170 | |
150 to 220 |
Poisson's Ratio | 0.28 | |
0.29 |
Shear Modulus, GPa | 79 | |
73 |
Shear Strength, MPa | 420 | |
220 to 230 |
Tensile Strength: Ultimate (UTS), MPa | 630 | |
330 to 370 |
Tensile Strength: Yield (Proof), MPa | 200 | |
190 to 310 |
Thermal Properties
Latent Heat of Fusion, J/g | 310 | |
250 |
Maximum Temperature: Mechanical, °C | 1150 | |
400 |
Melting Completion (Liquidus), °C | 1400 | |
1470 |
Melting Onset (Solidus), °C | 1360 | |
1430 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 12 | |
62 |
Thermal Expansion, µm/m-K | 15 | |
12 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 1.8 | |
6.9 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.0 | |
7.9 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 37 | |
1.8 |
Density, g/cm3 | 8.0 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 6.2 | |
1.4 |
Embodied Energy, MJ/kg | 89 | |
18 |
Embodied Water, L/kg | 220 | |
45 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 180 | |
78 to 91 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 100 | |
92 to 260 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 22 | |
12 to 13 |
Strength to Weight: Bending, points | 20 | |
13 to 15 |
Thermal Diffusivity, mm2/s | 3.2 | |
17 |
Thermal Shock Resistance, points | 15 | |
10 to 12 |
Alloy Composition
Aluminum (Al), % | 0 to 0.025 | |
0 |
Carbon (C), % | 0.040 to 0.080 | |
0 to 0.1 |
Cerium (Ce), % | 0.050 to 0.1 | |
0 |
Chromium (Cr), % | 26 to 28 | |
0 |
Iron (Fe), % | 36.4 to 42.3 | |
99.31 to 99.7 |
Manganese (Mn), % | 0 to 1.0 | |
0.3 to 0.5 |
Nickel (Ni), % | 31 to 33 | |
0 |
Niobium (Nb), % | 0.6 to 1.0 | |
0 |
Nitrogen (N), % | 0 to 0.1 | |
0 |
Phosphorus (P), % | 0 to 0.020 | |
0 to 0.040 |
Silicon (Si), % | 0 to 0.3 | |
0 |
Sulfur (S), % | 0 to 0.010 | |
0 to 0.050 |