MakeItFrom.com
Menu (ESC)

EN 1.4877 Stainless Steel vs. C14200 Copper

EN 1.4877 stainless steel belongs to the iron alloys classification, while C14200 copper belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4877 stainless steel and the bottom bar is C14200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 36
8.0 to 45
Fatigue Strength, MPa 170
76 to 130
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
43
Shear Strength, MPa 420
150 to 200
Tensile Strength: Ultimate (UTS), MPa 630
220 to 370
Tensile Strength: Yield (Proof), MPa 200
75 to 340

Thermal Properties

Latent Heat of Fusion, J/g 310
210
Maximum Temperature: Mechanical, °C 1150
200
Melting Completion (Liquidus), °C 1400
1080
Melting Onset (Solidus), °C 1360
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 12
190
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
45
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
45

Otherwise Unclassified Properties

Base Metal Price, % relative 37
31
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 6.2
2.6
Embodied Energy, MJ/kg 89
41
Embodied Water, L/kg 220
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
29 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 100
24 to 500
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 22
6.8 to 11
Strength to Weight: Bending, points 20
9.1 to 13
Thermal Diffusivity, mm2/s 3.2
56
Thermal Shock Resistance, points 15
7.9 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.025
0
Arsenic (As), % 0
0.15 to 0.5
Carbon (C), % 0.040 to 0.080
0
Cerium (Ce), % 0.050 to 0.1
0
Chromium (Cr), % 26 to 28
0
Copper (Cu), % 0
99.4 to 99.835
Iron (Fe), % 36.4 to 42.3
0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 31 to 33
0
Niobium (Nb), % 0.6 to 1.0
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.020
0.015 to 0.040
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0 to 0.010
0