MakeItFrom.com
Menu (ESC)

EN 1.4877 Stainless Steel vs. C33200 Brass

EN 1.4877 stainless steel belongs to the iron alloys classification, while C33200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4877 stainless steel and the bottom bar is C33200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 36
7.0 to 60
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 79
40
Shear Strength, MPa 420
240 to 300
Tensile Strength: Ultimate (UTS), MPa 630
320 to 520
Tensile Strength: Yield (Proof), MPa 200
110 to 450

Thermal Properties

Latent Heat of Fusion, J/g 310
170
Maximum Temperature: Mechanical, °C 1150
130
Melting Completion (Liquidus), °C 1400
930
Melting Onset (Solidus), °C 1360
900
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 12
120
Thermal Expansion, µm/m-K 15
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
28

Otherwise Unclassified Properties

Base Metal Price, % relative 37
24
Density, g/cm3 8.0
8.2
Embodied Carbon, kg CO2/kg material 6.2
2.6
Embodied Energy, MJ/kg 89
44
Embodied Water, L/kg 220
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
35 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 100
60 to 960
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22
11 to 17
Strength to Weight: Bending, points 20
13 to 17
Thermal Diffusivity, mm2/s 3.2
37
Thermal Shock Resistance, points 15
11 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.025
0
Carbon (C), % 0.040 to 0.080
0
Cerium (Ce), % 0.050 to 0.1
0
Chromium (Cr), % 26 to 28
0
Copper (Cu), % 0
65 to 68
Iron (Fe), % 36.4 to 42.3
0 to 0.070
Lead (Pb), % 0
1.5 to 2.5
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 31 to 33
0
Niobium (Nb), % 0.6 to 1.0
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0 to 0.010
0
Zinc (Zn), % 0
29 to 33.5
Residuals, % 0
0 to 0.4