MakeItFrom.com
Menu (ESC)

EN 1.4877 Stainless Steel vs. C86200 Bronze

EN 1.4877 stainless steel belongs to the iron alloys classification, while C86200 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4877 stainless steel and the bottom bar is C86200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 36
21
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 79
42
Tensile Strength: Ultimate (UTS), MPa 630
710
Tensile Strength: Yield (Proof), MPa 200
350

Thermal Properties

Latent Heat of Fusion, J/g 310
190
Maximum Temperature: Mechanical, °C 1150
160
Melting Completion (Liquidus), °C 1400
940
Melting Onset (Solidus), °C 1360
900
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 12
35
Thermal Expansion, µm/m-K 15
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 37
23
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 6.2
2.9
Embodied Energy, MJ/kg 89
49
Embodied Water, L/kg 220
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
120
Resilience: Unit (Modulus of Resilience), kJ/m3 100
540
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 22
25
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 3.2
11
Thermal Shock Resistance, points 15
23

Alloy Composition

Aluminum (Al), % 0 to 0.025
3.0 to 4.9
Carbon (C), % 0.040 to 0.080
0
Cerium (Ce), % 0.050 to 0.1
0
Chromium (Cr), % 26 to 28
0
Copper (Cu), % 0
60 to 66
Iron (Fe), % 36.4 to 42.3
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.0
2.5 to 5.0
Nickel (Ni), % 31 to 33
0 to 1.0
Niobium (Nb), % 0.6 to 1.0
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0