MakeItFrom.com
Menu (ESC)

EN 1.4878 Stainless Steel vs. 518.0 Aluminum

EN 1.4878 stainless steel belongs to the iron alloys classification, while 518.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4878 stainless steel and the bottom bar is 518.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
80
Elastic (Young's, Tensile) Modulus, GPa 200
67
Elongation at Break, % 45
5.0
Fatigue Strength, MPa 190
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
25
Shear Strength, MPa 430
200
Tensile Strength: Ultimate (UTS), MPa 610
310
Tensile Strength: Yield (Proof), MPa 210
190

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 850
170
Melting Completion (Liquidus), °C 1430
620
Melting Onset (Solidus), °C 1380
560
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
98
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
24
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
81

Otherwise Unclassified Properties

Base Metal Price, % relative 16
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 3.2
9.4
Embodied Energy, MJ/kg 46
150
Embodied Water, L/kg 140
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
14
Resilience: Unit (Modulus of Resilience), kJ/m3 120
270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 22
32
Strength to Weight: Bending, points 20
38
Thermal Diffusivity, mm2/s 4.0
40
Thermal Shock Resistance, points 13
14

Alloy Composition

Aluminum (Al), % 0
88.1 to 92.5
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 65 to 74
0 to 1.8
Magnesium (Mg), % 0
7.5 to 8.5
Manganese (Mn), % 0 to 2.0
0 to 0.35
Nickel (Ni), % 9.0 to 12
0 to 0.15
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.8
0
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.25