MakeItFrom.com
Menu (ESC)

EN 1.4878 Stainless Steel vs. AISI 310S Stainless Steel

Both EN 1.4878 stainless steel and AISI 310S stainless steel are iron alloys. They have 83% of their average alloy composition in common.

For each property being compared, the top bar is EN 1.4878 stainless steel and the bottom bar is AISI 310S stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
170 to 210
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 45
34 to 44
Fatigue Strength, MPa 190
250 to 280
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 77
79
Shear Strength, MPa 430
420 to 470
Tensile Strength: Ultimate (UTS), MPa 610
600 to 710
Tensile Strength: Yield (Proof), MPa 210
270 to 350

Thermal Properties

Latent Heat of Fusion, J/g 290
310
Maximum Temperature: Corrosion, °C 490
450
Maximum Temperature: Mechanical, °C 850
1100
Melting Completion (Liquidus), °C 1430
1450
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
16
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 16
25
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.2
4.3
Embodied Energy, MJ/kg 46
61
Embodied Water, L/kg 140
190

Common Calculations

PREN (Pitting Resistance) 18
25
Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
200 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 120
190 to 310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
21 to 25
Strength to Weight: Bending, points 20
20 to 22
Thermal Diffusivity, mm2/s 4.0
4.1
Thermal Shock Resistance, points 13
14 to 16

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.080
Chromium (Cr), % 17 to 19
24 to 26
Iron (Fe), % 65 to 74
48.3 to 57
Manganese (Mn), % 0 to 2.0
0 to 2.0
Nickel (Ni), % 9.0 to 12
19 to 22
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.5
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0 to 0.8
0