MakeItFrom.com
Menu (ESC)

EN 1.4878 Stainless Steel vs. S30441 Stainless Steel

Both EN 1.4878 stainless steel and S30441 stainless steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4878 stainless steel and the bottom bar is S30441 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 45
45
Fatigue Strength, MPa 190
210
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 430
400
Tensile Strength: Ultimate (UTS), MPa 610
580
Tensile Strength: Yield (Proof), MPa 210
230

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 490
460
Maximum Temperature: Mechanical, °C 850
940
Melting Completion (Liquidus), °C 1430
1420
Melting Onset (Solidus), °C 1380
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 16
18
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.2
3.4
Embodied Energy, MJ/kg 46
50
Embodied Water, L/kg 140
150

Common Calculations

PREN (Pitting Resistance) 18
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
210
Resilience: Unit (Modulus of Resilience), kJ/m3 120
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
21
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 4.0
4.0
Thermal Shock Resistance, points 13
13

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.080
Chromium (Cr), % 17 to 19
17.5 to 19.5
Copper (Cu), % 0
1.5 to 2.5
Iron (Fe), % 65 to 74
62 to 71.7
Manganese (Mn), % 0 to 2.0
0 to 2.0
Nickel (Ni), % 9.0 to 12
8.0 to 10.5
Niobium (Nb), % 0
0.1 to 0.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 1.0
1.0 to 2.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0 to 0.8
0
Tungsten (W), % 0
0.2 to 0.8