MakeItFrom.com
Menu (ESC)

EN 1.4886 Stainless Steel vs. C82000 Copper

EN 1.4886 stainless steel belongs to the iron alloys classification, while C82000 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4886 stainless steel and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 45
8.0 to 20
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
45
Tensile Strength: Ultimate (UTS), MPa 580
350 to 690
Tensile Strength: Yield (Proof), MPa 300
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 320
220
Maximum Temperature: Mechanical, °C 1100
220
Melting Completion (Liquidus), °C 1390
1090
Melting Onset (Solidus), °C 1340
970
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 12
260
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
45
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
46

Otherwise Unclassified Properties

Base Metal Price, % relative 31
60
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 5.4
5.0
Embodied Energy, MJ/kg 76
77
Embodied Water, L/kg 190
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 230
80 to 1120
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20
11 to 22
Strength to Weight: Bending, points 19
12 to 20
Thermal Diffusivity, mm2/s 3.1
76
Thermal Shock Resistance, points 14
12 to 24

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Beryllium (Be), % 0
0.45 to 0.8
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 17 to 20
0 to 0.1
Cobalt (Co), % 0
2.2 to 2.7
Copper (Cu), % 0
95.2 to 97.4
Iron (Fe), % 38.7 to 49
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 33 to 37
0 to 0.2
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 1.0 to 2.0
0 to 0.15
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5