MakeItFrom.com
Menu (ESC)

EN 1.4886 Stainless Steel vs. S44330 Stainless Steel

Both EN 1.4886 stainless steel and S44330 stainless steel are iron alloys. They have 63% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4886 stainless steel and the bottom bar is S44330 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
160
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 45
25
Fatigue Strength, MPa 280
160
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 76
78
Shear Strength, MPa 400
280
Tensile Strength: Ultimate (UTS), MPa 580
440
Tensile Strength: Yield (Proof), MPa 300
230

Thermal Properties

Latent Heat of Fusion, J/g 320
290
Maximum Temperature: Corrosion, °C 420
560
Maximum Temperature: Mechanical, °C 1100
990
Melting Completion (Liquidus), °C 1390
1440
Melting Onset (Solidus), °C 1340
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 12
21
Thermal Expansion, µm/m-K 15
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 31
13
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 5.4
2.8
Embodied Energy, MJ/kg 76
40
Embodied Water, L/kg 190
140

Common Calculations

PREN (Pitting Resistance) 19
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
91
Resilience: Unit (Modulus of Resilience), kJ/m3 230
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
16
Strength to Weight: Bending, points 19
17
Thermal Diffusivity, mm2/s 3.1
5.7
Thermal Shock Resistance, points 14
16

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.025
Chromium (Cr), % 17 to 20
20 to 23
Copper (Cu), % 0
0.3 to 0.8
Iron (Fe), % 38.7 to 49
72.5 to 79.7
Manganese (Mn), % 0 to 2.0
0 to 1.0
Nickel (Ni), % 33 to 37
0
Niobium (Nb), % 0
0 to 0.8
Nitrogen (N), % 0 to 0.1
0 to 0.025
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 1.0 to 2.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0
0 to 0.8