MakeItFrom.com
Menu (ESC)

EN 1.4887 Stainless Steel vs. A201.0 Aluminum

EN 1.4887 stainless steel belongs to the iron alloys classification, while A201.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4887 stainless steel and the bottom bar is A201.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 45
4.7
Fatigue Strength, MPa 280
97
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 580
480
Tensile Strength: Yield (Proof), MPa 300
420

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1390
650
Melting Onset (Solidus), °C 1350
570
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 12
120
Thermal Expansion, µm/m-K 15
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
30
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
90

Otherwise Unclassified Properties

Base Metal Price, % relative 39
11
Density, g/cm3 8.0
3.0
Embodied Carbon, kg CO2/kg material 6.7
8.1
Embodied Energy, MJ/kg 96
150
Embodied Water, L/kg 210
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
22
Resilience: Unit (Modulus of Resilience), kJ/m3 230
1250
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 20
44
Strength to Weight: Bending, points 19
45
Thermal Diffusivity, mm2/s 3.2
46
Thermal Shock Resistance, points 14
21

Alloy Composition

Aluminum (Al), % 0
93.7 to 95.5
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 20 to 23
0
Copper (Cu), % 0
4.0 to 5.0
Iron (Fe), % 34.2 to 45
0 to 0.1
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0 to 2.0
0.2 to 0.4
Nickel (Ni), % 33 to 37
0
Niobium (Nb), % 1.0 to 1.5
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 1.0 to 2.0
0 to 0.050
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0.15 to 0.35
Residuals, % 0
0 to 0.1