MakeItFrom.com
Menu (ESC)

EN 1.4887 Stainless Steel vs. ASTM A387 Grade 22 Steel

Both EN 1.4887 stainless steel and ASTM A387 grade 22 steel are iron alloys. They have 43% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4887 stainless steel and the bottom bar is ASTM A387 grade 22 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
150 to 180
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 45
21
Fatigue Strength, MPa 280
160 to 240
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
74
Shear Strength, MPa 400
300 to 380
Tensile Strength: Ultimate (UTS), MPa 580
480 to 600
Tensile Strength: Yield (Proof), MPa 300
230 to 350

Thermal Properties

Latent Heat of Fusion, J/g 320
260
Maximum Temperature: Mechanical, °C 1100
460
Melting Completion (Liquidus), °C 1390
1470
Melting Onset (Solidus), °C 1350
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
40
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 39
3.8
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 6.7
1.7
Embodied Energy, MJ/kg 96
23
Embodied Water, L/kg 210
58

Common Calculations

PREN (Pitting Resistance) 22
5.6
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
85 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 230
140 to 320
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
17 to 21
Strength to Weight: Bending, points 19
17 to 20
Thermal Diffusivity, mm2/s 3.2
11
Thermal Shock Resistance, points 14
14 to 17

Alloy Composition

Carbon (C), % 0 to 0.15
0.050 to 0.15
Chromium (Cr), % 20 to 23
2.0 to 2.5
Iron (Fe), % 34.2 to 45
95.1 to 96.8
Manganese (Mn), % 0 to 2.0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 33 to 37
0
Niobium (Nb), % 1.0 to 1.5
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 1.0 to 2.0
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.025