MakeItFrom.com
Menu (ESC)

EN 1.4887 Stainless Steel vs. EN AC-45500 Aluminum

EN 1.4887 stainless steel belongs to the iron alloys classification, while EN AC-45500 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4887 stainless steel and the bottom bar is EN AC-45500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
110
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 45
2.8
Fatigue Strength, MPa 280
80
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 580
320
Tensile Strength: Yield (Proof), MPa 300
250

Thermal Properties

Latent Heat of Fusion, J/g 320
500
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1390
610
Melting Onset (Solidus), °C 1350
600
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 12
150
Thermal Expansion, µm/m-K 15
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
33
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
110

Otherwise Unclassified Properties

Base Metal Price, % relative 39
9.5
Density, g/cm3 8.0
2.6
Embodied Carbon, kg CO2/kg material 6.7
8.0
Embodied Energy, MJ/kg 96
150
Embodied Water, L/kg 210
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
8.2
Resilience: Unit (Modulus of Resilience), kJ/m3 230
430
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
53
Strength to Weight: Axial, points 20
34
Strength to Weight: Bending, points 19
40
Thermal Diffusivity, mm2/s 3.2
65
Thermal Shock Resistance, points 14
15

Alloy Composition

Aluminum (Al), % 0
90.6 to 93.1
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 20 to 23
0
Copper (Cu), % 0
0.2 to 0.7
Iron (Fe), % 34.2 to 45
0 to 0.25
Magnesium (Mg), % 0
0.2 to 0.45
Manganese (Mn), % 0 to 2.0
0 to 0.15
Nickel (Ni), % 33 to 37
0
Niobium (Nb), % 1.0 to 1.5
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 1.0 to 2.0
6.5 to 7.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1