MakeItFrom.com
Menu (ESC)

EN 1.4887 Stainless Steel vs. S35125 Stainless Steel

Both EN 1.4887 stainless steel and S35125 stainless steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4887 stainless steel and the bottom bar is S35125 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 45
39
Fatigue Strength, MPa 280
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
78
Shear Strength, MPa 400
370
Tensile Strength: Ultimate (UTS), MPa 580
540
Tensile Strength: Yield (Proof), MPa 300
230

Thermal Properties

Latent Heat of Fusion, J/g 320
300
Maximum Temperature: Corrosion, °C 600
490
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1390
1430
Melting Onset (Solidus), °C 1350
1380
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
12
Thermal Expansion, µm/m-K 15
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 39
36
Density, g/cm3 8.0
8.1
Embodied Carbon, kg CO2/kg material 6.7
6.4
Embodied Energy, MJ/kg 96
89
Embodied Water, L/kg 210
210

Common Calculations

PREN (Pitting Resistance) 22
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
170
Resilience: Unit (Modulus of Resilience), kJ/m3 230
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
19
Strength to Weight: Bending, points 19
18
Thermal Diffusivity, mm2/s 3.2
3.1
Thermal Shock Resistance, points 14
12

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.1
Chromium (Cr), % 20 to 23
20 to 23
Iron (Fe), % 34.2 to 45
36.2 to 45.8
Manganese (Mn), % 0 to 2.0
1.0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 33 to 37
31 to 35
Niobium (Nb), % 1.0 to 1.5
0.25 to 0.6
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 1.0 to 2.0
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.015