MakeItFrom.com
Menu (ESC)

EN 1.4889 Cast Nickel vs. CC382H Copper-nickel

EN 1.4889 cast nickel belongs to the nickel alloys classification, while CC382H copper-nickel belongs to the copper alloys. They have a modest 34% of their average alloy composition in common, which, by itself, doesn't mean much. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4889 cast nickel and the bottom bar is CC382H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 3.4
20
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
53
Tensile Strength: Ultimate (UTS), MPa 500
490
Tensile Strength: Yield (Proof), MPa 270
290

Thermal Properties

Latent Heat of Fusion, J/g 350
240
Maximum Temperature: Mechanical, °C 1160
260
Melting Completion (Liquidus), °C 1360
1180
Melting Onset (Solidus), °C 1320
1120
Specific Heat Capacity, J/kg-K 480
410
Thermal Expansion, µm/m-K 14
15

Otherwise Unclassified Properties

Base Metal Price, % relative 55
41
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 8.5
5.2
Embodied Energy, MJ/kg 120
76
Embodied Water, L/kg 280
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
85
Resilience: Unit (Modulus of Resilience), kJ/m3 180
290
Stiffness to Weight: Axial, points 14
8.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 18
15
Strength to Weight: Bending, points 18
16
Thermal Shock Resistance, points 13
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Bismuth (Bi), % 0
0 to 0.0020
Boron (B), % 0
0 to 0.010
Carbon (C), % 0.35 to 0.45
0 to 0.030
Chromium (Cr), % 32.5 to 37.5
1.5 to 2.0
Copper (Cu), % 0
62.8 to 68.4
Iron (Fe), % 10.5 to 21.2
0.5 to 1.0
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 1.0 to 1.5
0.5 to 1.0
Nickel (Ni), % 42 to 46
29 to 32
Niobium (Nb), % 1.5 to 2.0
0
Phosphorus (P), % 0 to 0.040
0 to 0.010
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 1.5 to 2.0
0.15 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Tellurium (Te), % 0
0 to 0.0050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0 to 0.15