MakeItFrom.com
Menu (ESC)

EN 1.4889 Cast Nickel vs. ISO-WD32250 Magnesium

EN 1.4889 cast nickel belongs to the nickel alloys classification, while ISO-WD32250 magnesium belongs to the magnesium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4889 cast nickel and the bottom bar is ISO-WD32250 magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
45
Elongation at Break, % 3.4
4.5 to 8.6
Fatigue Strength, MPa 110
170 to 210
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 79
17
Tensile Strength: Ultimate (UTS), MPa 500
310 to 330
Tensile Strength: Yield (Proof), MPa 270
240 to 290

Thermal Properties

Latent Heat of Fusion, J/g 350
340
Maximum Temperature: Mechanical, °C 1160
120
Melting Completion (Liquidus), °C 1360
600
Melting Onset (Solidus), °C 1320
550
Specific Heat Capacity, J/kg-K 480
980
Thermal Expansion, µm/m-K 14
26

Otherwise Unclassified Properties

Base Metal Price, % relative 55
13
Density, g/cm3 7.9
1.8
Embodied Carbon, kg CO2/kg material 8.5
24
Embodied Energy, MJ/kg 120
160
Embodied Water, L/kg 280
950

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
14 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 180
630 to 930
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
67
Strength to Weight: Axial, points 18
49 to 51
Strength to Weight: Bending, points 18
58 to 60
Thermal Shock Resistance, points 13
19 to 20

Alloy Composition

Carbon (C), % 0.35 to 0.45
0
Chromium (Cr), % 32.5 to 37.5
0
Iron (Fe), % 10.5 to 21.2
0
Magnesium (Mg), % 0
94.9 to 97.1
Manganese (Mn), % 1.0 to 1.5
0
Nickel (Ni), % 42 to 46
0
Niobium (Nb), % 1.5 to 2.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.5 to 2.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
2.5 to 4.0
Zirconium (Zr), % 0
0.45 to 0.8
Residuals, % 0
0 to 0.3