MakeItFrom.com
Menu (ESC)

EN 1.4901 Stainless Steel vs. ASTM A182 Grade F911

Both EN 1.4901 stainless steel and ASTM A182 grade F911 are iron alloys. Both are furnished in the normalized and tempered condition. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4901 stainless steel and the bottom bar is ASTM A182 grade F911.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
20
Fatigue Strength, MPa 310
350
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 460
430
Tensile Strength: Ultimate (UTS), MPa 740
690
Tensile Strength: Yield (Proof), MPa 490
500

Thermal Properties

Latent Heat of Fusion, J/g 260
270
Maximum Temperature: Mechanical, °C 650
600
Melting Completion (Liquidus), °C 1490
1480
Melting Onset (Solidus), °C 1450
1440
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
26
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.2
9.2
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
10

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 40
40
Embodied Water, L/kg 89
90

Common Calculations

PREN (Pitting Resistance) 14
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
130
Resilience: Unit (Modulus of Resilience), kJ/m3 620
650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 26
24
Strength to Weight: Bending, points 23
22
Thermal Diffusivity, mm2/s 6.9
6.9
Thermal Shock Resistance, points 23
19

Alloy Composition

Aluminum (Al), % 0 to 0.020
0 to 0.020
Boron (B), % 0.0010 to 0.0060
0.00030 to 0.0060
Carbon (C), % 0.070 to 0.13
0.090 to 0.13
Chromium (Cr), % 8.5 to 9.5
8.5 to 9.5
Iron (Fe), % 85.8 to 89.1
86.2 to 88.9
Manganese (Mn), % 0.3 to 0.6
0.3 to 0.6
Molybdenum (Mo), % 0.3 to 0.6
0.9 to 1.1
Nickel (Ni), % 0 to 0.4
0 to 0.4
Niobium (Nb), % 0.040 to 0.090
0.060 to 0.1
Nitrogen (N), % 0.030 to 0.070
0.040 to 0.090
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 0 to 0.5
0.1 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.010
Titanium (Ti), % 0 to 0.010
0 to 0.010
Tungsten (W), % 1.5 to 2.0
0.9 to 1.1
Vanadium (V), % 0.15 to 0.25
0.18 to 0.25
Zirconium (Zr), % 0 to 0.010
0 to 0.010