MakeItFrom.com
Menu (ESC)

EN 1.4901 Stainless Steel vs. ASTM Grade LCB Steel

Both EN 1.4901 stainless steel and ASTM grade LCB steel are iron alloys. Both are furnished in the normalized and tempered condition. They have 88% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4901 stainless steel and the bottom bar is ASTM grade LCB steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
27
Fatigue Strength, MPa 310
200
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
72
Tensile Strength: Ultimate (UTS), MPa 740
540
Tensile Strength: Yield (Proof), MPa 490
270

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 650
400
Melting Completion (Liquidus), °C 1490
1450
Melting Onset (Solidus), °C 1450
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
51
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.2
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 11
1.8
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 40
18
Embodied Water, L/kg 89
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 620
200
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 26
19
Strength to Weight: Bending, points 23
19
Thermal Diffusivity, mm2/s 6.9
14
Thermal Shock Resistance, points 23
17

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.070 to 0.13
0 to 0.3
Chromium (Cr), % 8.5 to 9.5
0
Iron (Fe), % 85.8 to 89.1
97 to 100
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.040 to 0.090
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.045
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.0
0
Vanadium (V), % 0.15 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 1.0